

Systematics and Anomalies in Rare Earth/Aluminum Bromide Vapor Complexes: Thermodynamic Properties of the Vapor Complexes $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu

Zhi-Chang Wang*,[†] and Jin Yu^{†,‡}

Department of Chemistry, Northeastern University, 3-11 Culture Road, Shenyang 110004, China, and School of Sciences, Shenyang University of Technology, 1 S. 13th Road, Shenyang 110023, China

Received September 21, 2006

Systematics and anomalies in the rare earth/aluminum bromide vapor complexes have been investigated by the phase equilibrium-quenching experiments. The measurements suggest that the LnAl₃Br₁₂ complexes are the predominant vapor complexes for the 16 rare earth elements Ln = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu in the temperature range 601–833 K and pressure range 0.01–0.22 MPa, which is different from the rare earth/aluminum chloride systems, where the predominant vapor complexes are LnAl₃Cl₁₂ from Ln = La to Ln = Lu, but LnAl₂Cl₉ for Ln = Sc and Y are roughly in the same ranges, which indicates the importance of the halogen anion radius on the rare earth vapor complex formation. In the temperature and pressure ranges, gaseous Al₂Br₆ and AlBr₃ are dominant species and the molar fraction of LnAl₃Br₁₂ is normally less than 0.01. Thermodynamic functions of the reactions LnBr₃(s) + (3/2)Al₂Br₆(g) = LnAl₃Br₁₂(g) were calculated from the measurements for the 16 rare earth elements and then smoothly interpolated for the radioelement Ln = Pm. The standard molar enthalpies and standard molar entropies show significant Gd divergences from LaAl₃Br₁₂ to LuAl₃-Br₁₂, LuAl₃Br₁₂, YAl₃Br₁₂, and LaAl₃Br₁₂ when plotted as functions of the rare earth atomic number. They also suggest nearly linear manner for ScAl₃-Br₁₂, LuAl₃Br₁₂, YAl₃Br₁₂, and LaAl₃Br₁₂ when plotted as functions of the rare earth atomic number.

Introduction

Rare earth element complexes are of fundamental importance not only in the liquid and solid states but also in the gaseous state. In recent years there has been increased emphasis on the experimental and theoretical investigations of the rare earth element halide vapor complexes, particularly in the LnX₃-MX and LnX₃-AlX₃ systems (where Ln = rare earth, M = alkali metal, and X = halogen).¹⁻¹⁰ These

4248 Inorganic Chemistry, Vol. 46, No. 10, 2007

complexes may enhance the volatility of the rare earth halides to 10^2 times in the former case and to 10^{13} times in the latter case. Therefore, they have been used as key constituents chemically transported in high-intensity discharge lamps, anhydrous rare earth halides production, and rare earth extraction and separation (see, for example, refs 1-3 and references therein). They may also act as better model systems than the liquid and solid complexes for understanding the nature of rare earth elements in their complexes because of the negligible molecular interactions at the gaseous state. Until now, however, experimental information is very limited on the systematics and anomalies in the thermodynamic properties of the rare earth element halide vapor complexes.

Thermodynamic properties of the reactions $LnX_3(s) + (n/2)Al_2X_6(g) = LnAl_nX_{3n+3}(g)$ in the LnX_3 -AlX₃ systems have been experimentally determined by the methods of

^{*} To whom correspondence should be addressed. E-mail: wangzc@ mail.neu.edu.cn.

[†] Northeastern University.

[‡] Shenyang University of Technology.

Boghosian, S.; Papatheodorou, G. N. Halide Vapors and Vapor Complexes. In *Handbook on the Physics and Chemistry of Rare Earths*; Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier: Amsterdam, 1996; Vol. 23, p 435.

⁽²⁾ Jiang, J.; Ozaki, T.; Machida, K.; Adachi, G. J. Alloys Compd. 1997, 260, 222.

⁽³⁾ Oppermann, H.; Schmidt, P. Z. Anorg. Allg. Chem. 2005, 631, 1309.

⁽⁴⁾ Hilpert, K.; Niemann, U. Thermochim. Acta 1997, 299, 49.

⁽⁵⁾ Lisek, I.; Kapala, J.; Miller, M. J. Alloys Compd. 1998, 280, 77.

⁽⁶⁾ Kapala, J.; Lisek, I.; Roszak, S.; Miller, M. Polyhedron 1999, 18, 2845.

⁽⁷⁾ Akdeniz, Z.; Önem, Z. C.; Tosi, M. P. Z. Naturforch. 2001, 56a, 721.

⁽⁸⁾ Önem, Z. C.; Akdeniz, Z.; Tosi, M. P. Z. Naturforch. 2002, 57a, 937.

⁽⁹⁾ Groen, C. P.; Oskam, A.; Kovács, A. *Inorg. Chem.* 2000, *39*, 6001.
(10) Groen, C. P.; Oskam, A.; Kovács, A. *Inorg. Chem.* 2003, *42*, 851.

Rare Earth/Aluminum Bromide Vapor Complexes

UV-vis spectrometry,¹¹⁻¹⁴ mass spectrometry,¹⁵ radiochemistry,^{16,17} quenching,¹⁸⁻²² entrainment,¹⁸ and chemical vapor transport.^{23–28} Standard molar enthalpies and standard molar entropies of the reactions have been derived from the measurements for the chloride vapor complexes LnAl_nCl_{3n+3} of the 16 rare earth elements Ln = Sc,^{15,19} Y,^{19,24} La,^{21,22,27} Ce, ^{21,22} Pr, ²¹ Nd, ^{11,21,26} Sm, ^{12,21} Eu, ^{21,23} Gd, ^{16,18,21} Tb, ²¹ Dy, ^{20,21} Ho,^{13,21,22} Er,²¹ Tm,^{16,21} Yb,^{17,21} and Lu²¹ and interpolated for that of the radioelement $Ln = Pm.^{21}$ However, the standard thermodynamic property values are available only for the bromide vapor complexes $LnAl_nBr_{3n+3}$ of $Ln = Y^{25}$ and La^{28} and for the iodide vapor complexes $LnAl_nI_{3n+3}$ of $Ln = Nd.^{14}$ These results have recently been discussed in the excellent reviews of Boghosian and Papatheodorou,¹ Adachi and coworkers,² and Oppermann and Schmidt.³ However, the chemical vapor transport data have not been collected in ref 2 and have only been denoted as estimated values in ref 1 probably due to the relatively large experimental uncertainties.

We¹⁹⁻²² have improved the phase equilibrium-quenching technique and applied it to determine the stoichiometry and thermodynamic properties of the reactions $LnCl_3(s) + (n/2)$ 2)Al₂Cl₆(g) = LnAl_nCl_{3n+3}(g) for the 16 rare earth elements Ln = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,Tm, Yb, and Lu, and the results agree well with most of the literature data. In this study, we extend the phase equilibriumquenching investigations to the reactions $LnBr_3(s) + (n/2)Al_2$ - $Br_6(g) = LnAl_nBr_{3n+3}(g)$ for the 16 rare earth elements Ln = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. We are interested in whether the systematics and anomalies in the $LnAl_nBr_{3n+3}$ vapor complexes are the same as those in the $LnAl_nCl_{3n+3}$ vapor complexes.

Experimental Section

The chemicals used in this study were of 99.999% purity for Al powder, more than 99.5% purity for Br₂, more than 99.99% purity

- (11) Øye, H. A.; Gruen, M. J. Am. Chem. Soc. 1969, 91, 2229.
- (12) Papatheodorou, G. N.; Kucera, G. H. Inorg. Chem. 1979, 18, 385.
- (13) Hoekstra, H. R.; Hessler, J. P.; Williams, C. W.; Carnall, W. T. In High Temperature Metal Halide Chemistry; Hildenbrand, D. L., Cubicciotti, D. D., Eds.; The Electrochenical Society: Pennington, NJ, 1978; PV 78-1, p 123.
- (14) Kulset, N. High Temperature Study of Noedymium Halide Gas Complexes. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1986.
- (15) Schäfer, H.; Flörke, U. Z. Anorg. Allg. Chem. 1981, 479, 89.
- (16) Steidl, G.; Bächmann, K.; Dienstbach, F. J. Phys. Chem. 1983, 87, 5010
- (17) Steidl, G.; Bächmann, K.; Dienstbach, F. Polyhedron 1983, 2, 727. (18) Cosandey, M.; Emmenegger, F. P. J. Electrochem. Soc. 1979, 126,
- 1601
- (19) Wang, Z.-C.; Wang, L.-S.; Gao, R.-J.; Su, Y. J. Chem. Soc., Faraday Trans. 1996, 92, 1887
- (20) Wang, L.-S.; Gao, R.-J.; Su, Y.; Wang, Z.-C. J. Chem. Thermodyn. 1996, 28, 1093.
- (21) Wang, Z.-C.; Wang, L.-S. Inorg. Chem. 1997, 36, 1536.
 (22) Wang, Z.-C.; Wang, L.-S. J. Alloys Compd. 1998, 265, 153
- (23) Lange, F. Th.; Bärnighausen, H. Z. Anorg. Allg. Chem. 1993, 619, 1747.
- (24) Oppermann, H.; Huong, D. Q. Z. Anorg. Allg. Chem. 1995, 621, 659. (25) Oppermann, H.; Hennig, Z.; Dao Quoc, H. Z. Naturforch. 1998, 53b,
- 361.
- (26) Oppermann, H.; Zhang, M.; Hennig, Z. Z. Naturforch. 1998, 53b, 1343. (27) Oppermann, H.; Dao Quoc, H.; Morgenstern, A. Z. Naturforch. 1999, 54h 1410
- (28) Oppermann, H.; Dao Quoc, H.; Zhang-Presse, M. Z. Naturforch. 2001, 56b, 908.

Figure 1. The ampule.

for AlBr₃, and more than 99.9% purity for CeO₂, Pr₆O₁₁, Tb₄O₇, and $Ln_{2}^{*}O_{3}$ (where $Ln^{*} = Sc$, Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu).

The anhydrous rare earth element bromides were prepared by the direct reactions of their corresponding oxides with a large excess of AlBr₃ at an atomic ratio Ln:Al =1:4. The main reactions may be expressed as $(1/2)Ln_{2}^{*}O_{3}(s) + (1/2)Al_{2}Br_{6}(g) = Ln^{*}Br_{3}(s) +$ $(1/2)Al_2O_3(s), CeO_2(s) + (1/2)Al_2Br_6(g) = CeBr_3(s) + (1/2)Al_2O_3$ $(s) + (1/4)O_2(g), (1/6)Pr_6O_{11}(s) + (1/2)Al_2Br_6(g) = PrBr_3(s) + (1/2)Al_2Br_6(g) = 0$ $2)Al_2O_3(s) + (1/6)O_2(g)$, and $(1/4)Tb_4O_7(s) + (1/2)Al_2Br_6(g) =$ $TbBr_3(s) + (1/2)Al_2O_3(s) + (1/8)O_2(g)$, respectively, where the latter three reactions produced oxygen, which may completely be removed by adding a small amount of Al powder. In a typical reaction, after placement of either 0.2 g of Ln^{*}₂O₃ and 1.2 g of AlBr₃ or 0.2 g of CeO₂, Pr₆O₁₁, or Tb₄O₇, 1.2 g of AlBr₃, and 0.015 g of Al powder into an one-end sealed quartz tube, 20 mm in inner diameter and 300 mm in length, under Ar atmosphere, and the sealing of its other end under vacuum, the reaction mixture was heated at 600 K for 1 h. The resultant LnBr3 was separated from the crude product by the chemical vapor transport method. For doing so, the evacuated and sealed quartz tube was placed in a tubular furnace with a reduced temperature gradient from 750 to 460 K and the solid crude product was placed at the hot end of the quartz tube. Each of the chemical vapor transport reactions was carried out for 6 h. During the reactions, the vapor complexes $LnAl_nBr_{3n+3}$ were produced by the reactions of LnBr3 with the residual AlBr3 at the hot end of the quartz tube, chemically transported from the hot end to the cold end, and then decomposed into LnBr₃(s) and Al₂Br₆(g) at the cold end. After the reaction, the quartz tube was removed out quickly from the furnace and its hot end was quenched with water, where AlBr₃ was quickly condensed. By using this method, LnBr₃ may easily be separated from the residual reactors and other resultants. In addition, the anhydrous rare earth element bromides can also be prepared by dropping liquid Br₂ directly into a solid mixture consisting of the corresponding rare earth oxides and a large excess of Al powder in one-end sealed quartz tubes under Ar atmosphere and then chemically transported via their vapor complexes in the evacuated and sealed quartz tubes. All anhydrous chemicals were handled in a glovebox containing a dry argon atmosphere with a water vapor level less than 20 ppm.

The phase equilibrium-quenching experiments were carried out in closed ampules made from Pyrex glass with a special shape as shown in Figure 1. Less AlBr3 and an excess of LnBr3 were placed in the deep ditch of the ampule (part A in Figure 1), and the ampule was then sealed under vacuum. That may ensure AlBr₃ to evaporate completely and to react with part of the LnBr₃(s) to reach an equilibrium at high temperature among LnBr₃(s), Al₂Br₆(g), and $LnAl_nBr_{3n+3}(g)$ in each ampule.

Four ampules were placed in a graphite container and then placed in a furnace, where the temperature was kept constant within ± 0.5 K measured with a Pt-PtRh₁₀ thermocouple. Preliminary experiments showed that the maximum temperature difference in the container was always smaller than 1.0 K, so that the four samples were kept at the same temperature during each run. The equilibrium period was 6 h for each run, which is the same as that for the rare earth element chloride complexes.^{19–22} After the thermodynamic equilibrium had been achieved, the other ends of the ampules (part B in Figure 1) were quickly covered with asbestos and then quenched with water. Thus, the equilibrium gas phase was quickly condensed in part B of the ampules and the mole numbers of Ln³⁺ and Br⁻ in the condensates could then be determined by spectrophotometry and titration, respectively. The equilibrium experiments were kept in the ranges 601-833 K and 0.01-0.22 MPa to avoid the high-temperature formation of solid solutions or solid—liquid phases, and the glass ampule broken when quenching at high pressure.

Results and Discussion

1. Stoichiometry and Equilibrium Constants. In all previous publications,^{11–28} only the mono-rare-earth vapor complexes $LnAl_nX_{3n+3}$ were assumed to be formed in the LnX_3 –AlX₃ systems (i.e., m = 1 in $Ln_mAl_nX_{3(m+n)}$). Thus, the complexation reactions investigated in this study may be expressed as

$$LnBr_3(s) + (n/2)Al_2Br_6(g) = LnAl_nBr_{3n+3}(g)$$
(1)

with the equilibrium constant

$$K_{p} = (p_{\text{LnAl}_{n}Br_{3n+3}}/p^{\circ})/(p_{\text{Al}_{2}\text{Br}_{6}}/p^{\circ})^{n/2}$$
(2)

where $p^{\circ} = 0.100$ MPa. In the simple case that only one complex is formed, the values of *n*, K_P , $p_{Al_2Br_6}$, and $p_{LnAl_nBr_{3n+3}}$ in eq 2 may be calculated by

$$\ln(p_{\text{LnAl}_{n}\text{Br}_{3n+3}}/p^{\circ}) = \ln K_{p} + (n/2) \ln(p_{\text{Al}_{2}\text{Br}_{6}}/p^{\circ}) \qquad (3)$$

$$p_{\mathrm{LnAl}_{n}\mathrm{Br}_{3n+3}} = RTn_{\mathrm{LnAl}_{n}\mathrm{Br}_{3n+3}}/V \tag{4}$$

$$p_{\mathrm{Al}_{2}\mathrm{Br}_{6}} = RTn_{\mathrm{Al}_{2}\mathrm{Br}_{6}}/V \tag{5}$$

$$p_{\text{AlBr}_3} = RTn_{\text{AlBr}_3}/V \tag{6}$$

$$n_{\mathrm{Ln}^{3+}} = n_{\mathrm{LnAl}_{\mathrm{n}}\mathrm{Br}_{3\mathrm{n}+3}} \tag{7}$$

$$n_{\rm Br^-} = 3n_{\rm AlBr_3} + 6n_{\rm Al_2Br_6} + (3n+3)n_{\rm LnAl_nBr_{3n+3}}$$
(8)

and²⁹

$$\log K_{p,(10)} = 2 \log(p_{\text{AlBr}_3}/p^\circ) - \log(p_{\text{Al}_2\text{Br}_6}/p^\circ) = -2.647 + 4.149 \times \log T - 5.512 \times 10^3 (1/T) - 3.752 \times 10^4 (1/T)^2 - 3.745 \times 10^{-3} \times T + 9.295 \times 10^{-7} \times T^2$$
(9)

where *T* is reaction temperature, *V* is volume of the ampule, n_i and p_i are the mole number and pressure of the component

i, and $K_{p,(10)}$ is the equilibrium constant of the dissociation reaction 10

$$Al_2Br_6(g) = 2AlBr_3(g) \tag{10}$$

The total pressure may then be calculated by

$$P_{\text{total}} = p_{\text{AlBr}_3} + p_{\text{Al}_2\text{Br}_6} + p_{\text{LnAl}_n\text{Br}_{3n+3}}$$
(11)

In Tables S1–S16 (Supporting Information) are listed the volumes of the ampules, total pressures, and partial pressures of Al₂Br₆ and LnAl_nBr_{3n+3} at every reaction temperature for the 16 rare earth elements calculated by eqs 4-9 and 11. It can be seen that in the reactions gaseous Al₂Br₆ and AlBr₃ are dominant species and the molar fraction of LnAl₃Br₁₂ is normally less than 0.01. By a least-squares computation in terms of eq 3, the apparent values of the stoichiometric factor *n* may be calculated for $LnAl_nBr_{3n+3}$ for the 16 rare earth elements at different temperatures, and the results are also listed in Tables SI-S16, which are all within 2.96-3.04 and independent of temperature. In Figure S1 (Supporting Information) are shown the plots of $\ln(p_{\text{LnAl}_n\text{Br}_{3n+3}}/p^\circ)$ vs $\ln(p_{Al_2Br_6}/p^\circ)$ of the 16 rare earth elements at different temperatures, which are all straight lines. These results can meet the requirement of eqs 3, 7, and 8. Thus, the LnAl₃-Br₁₂ complexes are the predominant vapor complexes of the 16 rare earth elements to a first approximation. The equilibrium constants for the complexes LnAl₃Br₁₂ of the 16 rare earth elements can then be calculated by eq 3, and the results are listed in the last columns of Tables SI-S16 (Supporting Information).

This study shows that the LnAl₃Br₁₂ complexes are the predominant vapor complexes from Ln = Sc to Ln = Lu in the ranges 601-833 K and 0.01-0.22 MPa. On the other hand, our previous papers^{19,21} suggested the predominant vapor complexes to be LnAl₃Cl₁₂ from Ln = La to Ln = Lu but LnAl₂Cl₉ for Ln = Sc and Ln = Y in roughly the same temperature and pressure ranges. This indicates that the vapor complexes ScAl₃X₁₂ and YAl₃X₁₂ are much more stable than ScAl₂X₉ and YAl₂X₉ for X = Br but reverse for X = Cl in the nearly the same reaction conditions. Therefore, the halogen ionic radius is the decisive factor for the stoichiometry of the predominant vapor complexes ScAl_nX_{3n+3} and YAl_nX_{3n+3} for X = Cl and Br.

2. Standard Thermodynamic Quantities. Previous publications^{11–18,20–23} assumed the molar heat capacity ΔC_P° = 0 J mol⁻¹ K⁻¹ for the reactions LnCl₃(s) + (3/2)Al₂Cl₆(g) = LnAl₃Cl₁₂(g) from Ln = La to Ln = Lu. This assumption may reasonably be extended to the reaction 1 for LnAl₃Br₁₂ from Ln = Sc to Ln = Lu in this study. Let ΔG° , ΔH° , and ΔS° denote the molar Gibbs free energy, molar enthalpy, and molar entropy of reaction 1, which are related by

$$\Delta G^{\circ} = -RT \ln K_{p} = \Delta H^{\circ} - T\Delta S^{\circ}$$
(12)

As shown in Figure 2, plots of $R \ln K_p$ vs 1/T for the vapor complexes LnAl₃Br₁₂ of the 16 rare earth elements are all straight lines. The standard molar enthalpy and standard molar entropy of reaction 1 for LnAl₃Br₁₂ of the 16 rare earth

⁽²⁹⁾ Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1995.

Figure 2. Plots of $R \ln K_p$ vs 1/T for the rare earth element vapor complexes $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu ($p^\circ = 0.100$ MPa).

Table I. Thermodynamic Properties of the Complexation Reactions $LnBr_3(s) + (3/2)Al_2Br_6(g) = LnAl_3Br_{12}(g)$ from Ln = Sc to Ln = Lu

atom	ΔH_{298}° , kJ mol ⁻¹	ΔS°_{298} , J mol ⁻¹ K ⁻¹	ref
Sc	45.0 ± 2	20.2 ± 3	this study
Y	37.7 ± 2	14.5 ± 3	this study
	224 ± 8	217 ± 8	25 ^a
La	42.8 ± 2	11.4 ± 3	this study
	21 ± 8	-8 ± 8	3, 28 ^a
Ce	36.5 ± 2	3.0 ± 3	this study
Pr	31.2 ± 2	2.8 ± 3	this study
Nd	25.9 ± 2	-1.9 ± 3	this study
Pm	23.4 ± 2^{b}	-2.9 ± 3^{b}	this study
Sm	22.8 ± 2	-4.1 ± 3	this study
Eu	17.6 ± 2	-6.2 ± 3	this study
Gd	26.4 ± 2	-0.7 ± 3	this study
Tb	16.8 ± 2	-17.7 ± 3	this study
Dy	13.8 ± 2	-24.2 ± 3	this study
Ho	10.8 ± 2	-29.8 ± 3	this study
Er	13.7 ± 2	-30.2 ± 3	this study
Tm	16.5 ± 2	-24.3 ± 3	this study
Yb	29.7 ± 2	-5.6 ± 3	this study
Lu	37.0 ± 2	9.8 ± 3	this study

^a Chemical vapor transport measurements. ^b Interpolated values.

elements at 298 K can then be determined by a least-squares computation in terms of eq 12, and those for $PmAl_3Br_{12}$ may be smoothly interpolated in terms of the rare earth element atomic number from Ln = La to Ln = Lu. All the results are listed in Table 1 and shown in Figures 3 and 4, respectively.

Similar to the LnAl₃Cl₁₂ vapor complexes,²¹ the probable overall errors of the thermodynamic values for the LnAl₃-Br₁₂ vapor complexes may be estimated by the following method. The absolute errors may be $\pm 0.5\%$ in the chemical analysis for Ln³⁺ and Br⁻, $\pm 0.5\%$ in the volume measurement of the reaction ampu1e, and ± 2.0 K in the temperature

Figure 3. Atomic number dependence of the molar standard enthalpies for the rare earth element vapor complexes $LnAl_3Br_{12}$ from Ln = La to Ln= Lu reported in this study with the probable overall error ± 2 kJ mol⁻¹ (only shown at Ln = La).

Figure 4. Atomic number dependence of the molar standard entropies for the rare earth element vapor complexes $LnAl_3Br_{12}$ from Ln = La to Ln= Lu reported in this study with the probable overall error $\pm 3 \text{ J mol}^{-1}$ K^{-1} (only shown at Ln = La).

measurements, which may lead to the statistical errors not more than ± 0.2 kJ mol⁻¹ for ΔG° at every temperature, ± 0.7 kJ mol⁻¹ for $\Delta H_{T_{m}}^{\circ}$ and ± 1.0 J mol⁻¹ K⁻¹ for $\Delta S_{T_{m}}^{\circ}$, where T_{m} denotes the mean experimental temperatures. These uncertainties, together with that inherent in eq 9 and the error from the scatter of the experimental points shown in Figures S1–S16, may give rise to the probable overall errors of ±0.5 kJ mol⁻¹ for ΔG° , ±1.5 kJ mol⁻¹ for $\Delta H^{\circ}_{T_{\rm m}}$, and ±2.0 J mol⁻¹ K⁻¹ for $\Delta S^{\circ}_{T_{\rm m}}$ for all LnAl₃Br₁₂ from Ln = Sc to Ln = Lu. Moreover, the absolute error may be ±1.0 J mol⁻¹ K⁻¹ for the assumed value of $\Delta C^{\circ}_{P} = 0$ J mol⁻¹ K⁻¹, which may result in the additional probable uncertainties of not more than ±0.5 kJ mol⁻¹ for $\Delta B^{\circ}_{T_{\rm m}} - \Delta H^{\circ}_{298}$ and not more than ±1.0 J mol⁻¹ K⁻¹ for $\Delta S^{\circ}_{T_{\rm m}} - \Delta S^{\circ}_{298}$. Thus, the probable overall errors may be ±2 kJ mol⁻¹ for ΔH°_{298} and ±3 J mol⁻¹ K⁻¹ for ΔS°_{298} , respectively, for LnAl₃Br₁₂ from Ln = Sc to Ln = Lu.

As mentioned above, the literature thermodynamic data of the LnAl₃Cl₁₂ vapor complexes were mainly determined by using the methods of UV-vis spectrometry,^{11,12} radiochemistry,^{16,17} and quenching,¹⁸ most of which are in excellent or reasonably good agreement with our previous phase equilibrium-quenching measurements,²¹ and only those for LaAl₃Cl₁₂,²⁷ NdAl₃Cl₁₂,²⁶ and EuAl₃Cl₁₂²³ were measured by the dynamic method of chemical vapor transport, most of which were published later than ref 21. But the LnAl₃-Br₁₂ vapor complexes were all determined by the chemical vapor transport method.^{25,28} It would be therefore proper to compare our phase equilibrium-quenching measurements with the literature chemical vapor transport data first for the LnAl₃Cl₁₂ vapor complexes. The thermodynamic properties for the reactions $LnCl_3(s) + (3/2)Al_2Cl_6(g) = LnAl_3Cl_{12}(g)$ are $\Delta H_{298}^{\circ} = 47.9 \text{ kJ mol}^{-1}$ and $\Delta S_{298}^{\circ} = 7.8 \text{ J mol}^{-1} \text{ K}^{-1}$ for LaAl₃Cl₁₂, $\Delta H_{298}^{\circ} = 34.6$ kJ mol⁻¹ and $\Delta S_{298}^{\circ} = -3.3$ J mol^{-1} K⁻¹ for NdAl₃Cl₁₂, and $\Delta H_{298}^{\circ} = 23.5$ kJ mol⁻¹ and $\Delta S_{298}^{\circ} = -6.3 \text{ J mol}^{-1} \text{ K}^{-1}$ for EuAl₃Cl₁₂ and derive from the phase equilibrium-quenching measurements,²¹ where the former two have been quoted in refs 26 and 27. These values are in reasonably good agreement with $\Delta H_{298}^{\circ} = 42 \text{ kJ}$ mol^{-1} and $\Delta S_{298}^{\circ} = 1 \text{ J} mol^{-1} \text{ K}^{-1}$ for LaAl₃Cl₁₂ reported by Oppermann et al.^{3,27} and with $\Delta H_{298}^{\circ} = 26 \text{ kJ mol}^{-1}$ and $\Delta S_{298}^{\circ} = -11 \text{ J mol}^{-1} \text{ K}^{-1}$ for EuAl₃Cl₁₂,¹ which were derived from the thermodynamic data reported by Lange and Bärnighausen,²³ but much smaller than $\Delta H_{298}^{\circ} = 60 \text{ kJ}$ mol⁻¹ and $\Delta S_{298}^{\circ} = 33$ J mol⁻¹ K⁻¹ for NdAl₃Cl₁₂, which were derived from the thermodynamic data reported in ref 26 (or $\Delta H_{298}^{\circ} = 55 \text{ kJ mol}^{-1}$ as shown in Figure 10 of ref 3). Fortunately, all the ΔS_{298}° data reported in ref 21 for the $LnAl_3Cl_{12}$ vapor complexes from Ln = La to Ln = Lu, including $\Delta S_{298}^{\circ} = 7.8 \text{ J mol}^{-1} \text{ K}^{-1}$ for LaAl₃Cl₁₂, $\Delta S_{298}^{\circ} =$ $-3.3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for NdAl₃Cl₁₂, and $\Delta S_{298}^{\circ} = -6.3 \text{ J} \text{ mol}^{-1}$ K^{-1} for EuAl₃Cl₁₂, have recently been used in further thermodynamic calculations in the literature (see, for example, Table 9 in ref 3 and Table 3 in ref 27). Furthermore, Oppermann et al.³ have recognized the ΔH_{298}° values from 17 to 46 kJ mol⁻¹ and the ΔS_{298}° values from -17 to 8 J mol⁻¹ K⁻¹ for all the LnAl₃Cl₁₂ vapor complexes, which fit almost all the literature data except the above-mentioned values of $\Delta H_{298}^{\circ} = 60$ (or 55) kJ mol⁻¹ and $\Delta S_{298}^{\circ} = 33$ J $mol^{-1} K^{-1}$ for NdAl₃Cl₁₂.

The literature thermodynamic data for the $LnAl_3Br_{12}$ vapor complexes were determined by Oppermann et al. in terms of the chemical vapor transport method for $Ln = Y^{3,25}$ at

about 870–1010 K and for $Ln = La^{3,28}$ at about 670–820 K, which are also listed in Table 1. It would seem that the values of $\Delta H_{298}^{\circ} = 21 \text{ kJ mol}^{-1}$ and $\Delta S_{298}^{\circ} = -8 \text{ J mol}^{-1}$ K⁻¹ for LaAl₃Br₁₂ reported in ref 3 are somewhat comparable with those of $\Delta H_{298}^{\circ} = 42.8 \text{ kJ mol}^{-1}$ and $\Delta S_{298}^{\circ} = 11.4 \text{ J}$ mol⁻¹ K⁻¹ reported in this study. The molar Gibbs free energies are $\Delta G^{\circ}_{820} = 28$ kJ mol⁻¹ and $\Delta G^{\circ}_{670} = 22$ kJ mol⁻¹ derived from ref 3, while $\Delta G_{820}^{\circ} = 33.4 \text{ kJ mol}^{-1}$ and $\Delta G_{670}^{\circ} = 35.2 \text{ kJ mol}^{-1}$ derived from this study. Both show a larger difference at low temperature than at high temperature. On the other hand, from the thermodynamic data reported in ref 25, one may derive the values of $\Delta H_{298}^{\circ} =$ 224 kJ mol⁻¹ and $\Delta S_{298}^{\circ} = 217$ J mol⁻¹ K⁻¹ for YAl₃Br₁₂, which are the largest literature values for all the $LnAl_3X_{12}$ vapor complexes, not only much larger than those of ΔH_{298}° = 37.7 kJ mol⁻¹ and ΔS_{298}° = 14.5 J mol⁻¹ K⁻¹ for YAI₃-Br₁₂ reported in this study but also much larger than the second largest literature values for all the LnAl₃X₁₂ vapor complexes, $\Delta H_{298}^{\circ} = 60$ (or 55) kJ mol⁻¹ and $\Delta S_{298}^{\circ} = 33$ J mol⁻¹ K⁻¹ for NdAl₃Cl₁₂ reported by Oppermann themselves²⁶ as mentioned above. The molar Gibbs free energies are $\Delta G_{1010}^{\circ} = 5 \text{ kJ mol}^{-1}$ and $\Delta G_{870}^{\circ} = 35 \text{ kJ mol}^{-1}$ derived from ref 25, while $\Delta G_{1010}^{\circ} = 23.1$ kJ mol⁻¹ and $\Delta G_{870}^{\circ} =$ 25.1 kJ mol⁻¹ derived from this study. Both show a much larger difference at high temperature than at low temperature. Oppermann et al.²⁸ have discovered the predominant vapor complex to be LaAl₃Br₁₂ at about 670-820 K but for LaAl₂-Br₉ to be at about 970–1070 K in the LaBr₃–AlBr₃ system. Recently, they³ have also suggested the YAl_3Br_{12} to be not the sole vapor complex in the YBr₃-AlBr₃ system according to their unusually larger molar entropy values for YAl₃Br₁₂ compared to LaAl₃Br₁₂. Furthermore, they³ have recognized the values of $\Delta H_{298}^{\circ} = 45 \pm 21$ kJ mol⁻¹ and $\Delta S_{298}^{\circ} =$ -8 ± 17 J mol⁻¹ K⁻¹ for all the LnAl₃Br₁₂ vapor complexes, which are much smaller than the above-mentioned values of $\Delta H_{298}^{\circ} = 224 \text{ kJ mol}^{-1}$ and $\Delta S_{298}^{\circ} = 217 \text{ J mol}^{-1} \text{ K}^{-1}$ for YAl_3Br_{12} . It is known that the dynamic method of chemical vapor transport may be used for thermodynamic measurements only when the transport is steady-state diffusion controlled in the whole process and that the transport conditions may greatly affect the diffusion coefficient and equilibrium constant calculations in some cases.³⁰ Therefore, the experimental uncertainties in the chemical vapor transport measurements might be the main cause for the difference in the thermodynamic data reported in the literature^{3,25,28} and those reported in this study for the LnAl₃Br₁₂ vapor complexes.

3. Systematics and Anomalies. The standard molar enthalpy and standard molar entropy of the $LnAl_3Br_{12}$ vapor complexes from Ln = Sc to Ln = Lu reported in this study allow a systematic analysis of the thermodynamic properties not only against the atomic number of Ln^{3+} from Ln = La to Ln = Lu but also against the ionic radius of Ln^{3+} from Ln = Sc to Ln = Lu.

Figures 3 and 4 show the values of ΔH_{298}° and ΔS_{298}° for the LnAl₃Br₁₂ vapor complexes against the atomic number

⁽³⁰⁾ Emmenegger, F. P. Inorg. Chem. 1977, 16, 343.

Rare Earth/Aluminum Bromide Vapor Complexes

of Ln^{3+} from Ln = La to Ln = Lu. It can be seen that the values of the LnAl₃Br₁₂ vapor complexes decrease from Ln = La to Ln = Eu and then increase from Ln = Eu to Ln = Gd for ΔH_{298}° and ΔS_{298}° in the left-hand sides and decrease from Ln = Gd to Ln = Ho for ΔH_{298}° but to Ln = Er for ΔS_{298}° and then increase from them to Ln = Lu for ΔH_{298}° and ΔS_{298}° in the right-hand sides. This indicates a significant Gd divergence and two weak minimum points at Ln = Eu and Ho for ΔH_{298}° or at Ln = Eu and Er for ΔS_{298}° , where the difference between $\Delta S_{298}^{\circ} = -29.8 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for HoAl₃Br₁₂ and $\Delta S_{298}^{\circ} = -30.2 \text{ J mol}^{-1} \text{ K}^{-1}$ for ErAl₃Br₁₂ is within the experimental errors. Here, the Gd divergence is consistent with the half-filled 4f shell and the trends are similar to those of the LnAl₃Cl₁₂ vapor complexes.²¹ Furthermore, as compared with the LnAl₃Cl₁₂ vapor complexes from Ln = La to Ln = Lu, the ΔH_{298}° values of the $LnAl_3Br_{12}$ are smaller from Ln = La to Ln = Ho, are comparable for Ln = Er and Ln = Tm, and are larger for Ln = Yb and Ln = Lu, while the ΔS°_{298} values are larger for Ln = La, are comparable for Ln = Ce, are larger again from Ln = Pr to Ln = Pm, are comparable again for Ln = Smand Ln = Eu, are smaller from Ln = Gd to Ln = Tm, and are larger again for Ln = Yb and Ln = Lu. They lead to nearly equal ΔH_{298}° and ΔS_{298}° values between LaAl₃Br₁₂ and LuAl₃Br₁₂ but much larger ΔH_{298}° and ΔS_{298}° values for LaAl₃Cl₁₂ than LuAl₃Cl₁₂. They also result in a slightly larger ΔH_{298}° value (2.9 kJ mol⁻¹) for ErAl₃Br₁₂ than HoAl₃Br₁₂ but nearly equal ΔH_{298}^{o} values for HoAl₃Cl₁₂ and ErAl₃Cl₁₂ (with a difference smaller than the probable overall error ± 2 kJ mol⁻¹). These differences indicate again the importance of the halogen anions for the rare earth halide vapor complexes.

It is known that the structure information is essentially important for analyzing the systematics and anomalies in thermodynamic properties of rare earth element compounds and complexes from Ln = Sc to Ln = Lu. However, up to now scientists have different opinions on the microstructures of the rare earth complexes even in the condensed states.^{31–34} The gaseous metal halides have recently been appraised as one of the most difficult systems for structure determinations.³⁵ A large number of experimental and theoretical studies have been reported for the structures of gaseous rare earth halides, which have carefully been discussed in recent reviews,^{35,36} and new high-level computations^{37,38} have further enhanced our knowledge. The compositions of the rare earth halide vapor complex systems are much more complicated than the gaseous rare earth halide systems. It is

- (31) Gschneidner, K. A., Jr. J. Alloys Compd. 1993, 192, 1.
- (32) Gschneidner, K. A., Jr. J. Alloys Compd. 1995, 223, 165.
- (33) Kanno, H. J. Alloys Compd. 1993, 192, 271.
- (34) Karazija, R.; Kyniene, A. J. Phys. Chem. A 1998, 102, 897.
- (35) Hargittai, M. Chem. Rev. 2000, 100, 2233.
- (36) Kovács, A.; Konings, R. J. M. J. Phys. Chem. Ref. Data 2004, 33, 377.
- (37) Saloni, J.; Roszak, S.; Hilpert, K.; Miller, M.; Leszczynski, J. Eur. J. Inorg. Chem. 2004, 1212.
- (38) Saloni, J.; Roszak, S.; Hilpert, K.; Popovic, A.; Miller, M.; Leszczynski, J. Inorg. Chem. 2006, 45, 4508.

therefore not surprising that there have been only a few studies on the structures of the rare earth halide vapor complexes.

For microstructures of the rare earth halide vapor complexes, Papatheodorou^{1,9} has proposed various possible configurations: three for MLnX₄; one for LnAX₆ (where A = Al, Ga, and In); one for LnA_2X_9 ; four for LnA_3X_{12} ; two for LnA₄X₁₅. In the experimental determinations, Spiridonov et al.40 have performed an electron diffraction analysis for KYCl₄, Metallinou et al.⁴¹ reported the Raman spectra for CsScI₄, and Feltrin and Cesaro⁴² determined the infrared spectra for MDyCl₄ (M = Li, Na, Cs) and LiDyBr₄. In the theoretical investigations, Groen et al.^{9,10} carried out the quantum chemical calculations for $NaLnCl_4$ (Ln = Ce, Nd), $LiLnX_4$ (Ln = La, Ce, Dy; X = F, Cl, Br, I), and MLaX_4 (M = Na, K, Cs; X = F, Cl, Br, I), and Tosi and co-workers^{8,9} reported the ionic model calculations for $MLnX_4$ (M = Li, Na; Ln = La, Gd, Lu; X = F, Cl), $MLaF_4$ $(M = K, Rb, Cs), KLaCl_4, LnACl_6 (Ln = La, Nd, Er, Lu;)$ A = Al, Ga, NdGa₂Cl₉, and NdGa₃Cl₁₂. Neither experimental determinations nor theoretical calculations are available for the vapor complexes LnAl₃Cl₁₂ and LnAl₃Br₁₂ from $Ln = Sc to Ln = Lu.^{43}$

In the three "cluster" type structures suggested by Papatheodorou^{1,39} for the LnA₃X₁₂ (A = Al, Ga, In) vapor complexes, the lanthanide ion preserves the same coordination as in the solid rare earth chlorides reviewed earlier by Brown⁴⁴ (e.g., 6-fold for an end lanthanide chloride, 8-fold for a middle lanthanide chloride, and 9-fold for an early lanthanide chloride) and is bound to AX₄ by an edge or a face. However, this variation in the coordination number is unlikely to appear in the structures of the rare earth halide solid complexes and gaseous rare earth halides. For example,

- (39) Papatheodorou, G. N. In *Current Topics in Materials Science*; Kaldis, E., Ed.; North Holland Publishing Co.: New York, 1982; Vol. 10, p 249.
- (40) Spiridonov, V. P.; Brezgin, Y. A.; Shakhparonov, M. I. Zh. Strukt. Khim. 1971, 12, 1080.
- (41) Metallinou, M. M.; Herstad, O.; Ostvold, T.; Papatheodorou, G. N. Acta Chem. Scand. **1990**, 44, 683.
- (42) Feltrin, A.; Cesaro, S. N. High Temp. Mater. Sci. 1996, 35, 203.
- (43) Because no experimental data were available, an estimated value of $\Delta C_{P}^{\circ} = 0$ J mol⁻¹ K⁻¹ was first introduced by Schäfer (Schäfer, H. Angew. Chem. 1976, 88, 775) for the reaction $LnCl_3(s) + (3/2)Al_2$ - $Cl_6(g) = LnAl_3Cl_{12}(g)$ for Ln = Nd and then extended to $LnAl_3Cl_{12}$ and $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu as mentioned above. Moreover, the absolute error for $\Delta C_P^{\circ} = 0$ J mol⁻¹ K⁻¹ was omitted in the literature until we²⁰⁻²² introduced an estimated value of ± 1.0 J mol⁻¹ K⁻¹. Interestingly, to check the value of $\Delta C_p^{\circ} = 0$ J mol⁻¹ K⁻¹, one of the reviewers has calculated the molecular structure and the force field for gaseous ScAl₃Cl₁₂ and Al₂Cl₆ by ab initio (HF/3-21.G^{*}) and used the results for the calculation of the heat capacity. Although the level of calculation HF/3-21.G* is quite low as pointed out by the reviewer and the value of $C_{P,298}^{\circ}(Al_2Cl_6) = 150 \text{ J mol}^{-1}$ K⁻¹ calculated by the reviewer is obviously different from the literature values, such as $C_{P,298}^{\circ}(Al_2Cl_6) = 157.867 \text{ J mol}^{-1} \text{ K}^{-1}$ recommended by Barin,²⁹ the reviewer advised us to increase the probable overall errors for the standard thermodynamic quantities listed in Table 1. If the absolute error must be increased, for example, to $\pm 2.0 \text{ J mol}^{-1}$ K⁻¹, which needs the support of more sophisticated theory, the additional probable uncertainties may give rise to not more than ± 0.8 kJ mol⁻¹ for $\Delta H^{\circ}_{T_m} - \Delta H^{\circ}_{298}$ and not more than ± 1.7 J mol⁻¹ K⁻¹ for $\Delta H_{T_m}^{\circ} - \Delta S_{298}^{\circ}$, and then the probable overall errors may increase to $\pm 2.3 \text{ kJ mol}^{-1}$ for ΔH_{298}° and to $\pm 3.7 \text{ J mol}^{-1} \text{ K}^{-1}$ for ΔS_{298}° , respectively for $LnAl_3Cl_{12}^{230}$ and $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu. (44) Brown, D. Halides of the Lanthanides and Actinides; Wiley-VCH:
- (44) Brown, D. Hallaes of the Lanthaniaes and Actiniaes; wiley-VCH New York, 1968.

Figure 5. Ionic radius dependence of the molar standard enthalpies for the rare earth element vapor complexes $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu reported in this study with the probable overall error $\pm 2 \text{ kJ mol}^{-1}$ (only shown at Ln = Sc, Lu, Y, and La): (a) 8-fold coordination; (b) 6-fold coordination.

the experiments suggested the same 8-fold configuration structure for the solid complexes YAl₃Cl₁₂,^{3,45} GdAl₃Cl₁₂,⁴⁶ TbAl₃Cl₁₂,⁴⁶ DyAl₃Cl₁₂,^{46,47} HoAl₃Cl₁₂,⁴⁸ LaAl₃Br₁₂,⁴⁹ PrAl₃-Br₁₂,⁴⁹ and NdAl₃Br₁₂,⁴⁹ and the experimental and theoretical studies^{35,36} supported a planar (or quasiplanar) equilibrium structure for gaseous rare earth chlorides, bromides, and iodides. Furthermore, the ionic model calculations^{7,8} suggested the structures of the vapor complexes $MLnX_4$ (M = Li, Na; Ln = La, Gd, Lu; X = F, Cl) and LnACl₆ (Ln = La, Nd, Er, Lu; A = Al, Ga) to be independent of the rare earth species and the most stable structure for the vapor complex NdGa₃Cl₁₂ to be also the 8-fold configuration. Therefore, it would seem proper to assume the same structure for the $LnAl_3Br_{12}$ vapor complexes from Ln = Sc to Ln =Lu. One may then analyze the systematics and anomalies in their thermodynamic properties as functions of the rare earth ionic radius. Figures 5a and 6a show the standard molar enthalpies and standard molar entropies of the LnAl₃Br₁₂ vapor complexes from Ln = Sc to Ln = Lu against the rare earth ionic radius with an 8-fold coordination number,⁵⁰ which is the same as the vapor complex NdGa₃Cl₁₂ and the solid complexes $LnAl_3Cl_{12}$ (where Ln = Y, Gd, Tb, Dy, and Ho) and $LnAl_3Br_{12}$ (where Ln = La, Pr, and Nd) as mentioned above. It can be seen that the four vapor complexes ScAl₃Br₁₂, LuAl₃Br₁₂, YAl₃Br₁₂, and LaAl₃Br₁₂ have the largest ΔH°_{298} and ΔS°_{298} values and nearly lie on straight lines. (The experimental deviations from the linearity are almost within the probable overall errors, ± 2.0 kJ mol⁻¹ for ΔH_{298}° and $\pm 3.0 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for ΔS_{298}°). However, the

⁽⁴⁶⁾ Shamir, J.; Hake, D.; Urland, W. J. Raman Spectrosc. 1992, 23, 137.

Figure 6. Ionic radius dependence of the molar standard entropies for the rare earth element vapor complexes $LnAl_3Br_{12}$ from Ln = Sc to Ln = Lu reported in this study with the probable overall error ± 3 J mol⁻¹ K⁻¹ (only shown at Ln = Sc, Lu, Y, and La): (a) 8-fold coordination; (b) 6-fold coordination.

properties of the LnAl₃Br₁₂ complexes of middle and light lanthanides from Ln = Yb to Ln = Ce are anomalous. To obtain a deeper insight into the systematics and anomalies, Figures 5b and 6b show the ΔH_{298}° and ΔS_{298}° against rare earth ionic radius with a 6-fold coordination number⁵⁰ from Ln = Sc to Ln = Lu. The close similarity between Figure 5a,b and between Figure 6a,b suggests that the systematics and anomalies in the LnAl₃Br₁₂ vapor complexes are independent from the coordination number assumptions.

It is know that Sc^{3+} and Y^{3+} have no 4f electrons, Lu^{3+} has no unpaired 4f electrons, and normally La³⁺ also has no 4f electrons. Therefore, the linear or nearly linear manner of the standard molar enthalpies and standard molar entropies vs rare earth ionic radius for the vapor complexes ScAl₃-Br₁₂, LuAl₃Br₁₂, YAl₃Br₁₂, and LaAl₃Br₁₂ might be related to no unpaired 4f electrons in the four rare earth element ions. If this argument is also true for the rare earth chloride vapor complexes, the unknown ΔH_{298}° and ΔS_{298}° values of ScAl₃Cl₁₂ and YAl₃Cl₁₂ might be estimated from the known values of LaAl₃Cl₁₂ and LuAl₃Cl₁₂ reported in ref 21 in terms of the linear dependence of ΔH_{298}° and ΔS_{298}° on rare earth ionic radius. The results are $\Delta H_{298}^{\circ} = 12.3$ kJ mol⁻¹ and $\Delta S_{298}^{\circ} = -17.7 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for ScAl₃Cl₁₂ and $\Delta H_{298}^{\circ} =$ 31.6 kJ mol⁻¹ and $\Delta S_{298}^{\circ} = -3.9$ J mol⁻¹ K⁻¹ for YAl₃Cl₁₂, which may yield $\Delta G_{600}^{\circ} = 22.9 \text{ kJ mol}^{-1}$ and $\Delta G_{800}^{\circ} = 26.5$ kJ mol⁻¹ for ScAl₃Cl₁₂ and $\Delta G_{600}^{\circ} = 33.9$ kJ mol⁻¹ and $\Delta G_{800}^{\circ} = 34.7 \text{ kJ mol}^{-1}$ for YAl₃Cl₁₂. On the other hand, the values of standard enthalpies and standard entropies reported in ref 17 may yield $\Delta G_{600}^{\circ} = 13.9 \text{ kJ mol}^{-1}$ and $\Delta G_{800}^{\circ} =$ 15.3 kJ mol⁻¹ for ScAl₂Cl₉ and $\Delta G_{600}^{\circ} = 23.0$ kJ mol⁻¹ and $\Delta G_{800}^{\circ} = 23.9 \text{ kJ mol}^{-1}$ for YAl₂Cl₉. These data clearly indicate that the ScAl2Cl9 and YAl2Cl9 vapor complexes are much more stable than the ScAl₃Cl₁₂ and YAl₃Cl₁₂ vapor complexes at the experimental temperatures. This is consis-

⁽⁴⁷⁾ Hake, D.; Urland, W. Z. Anorg. Allg. Chem. 1990, 586, 99.
(48) Hake, D.; Urland, W. Angew. Chem. 1989, 101, 1416.

⁽⁴⁹⁾ Hake, D.; Urland, W. Z. Anorg. Allg. Chem. **1992**, 613, 45.

⁽⁵⁰⁾ Shannon, R. D. Acta Crystallogr. **1976**, A32, 751.

Rare Earth/Aluminum Bromide Vapor Complexes

tent with our previous measurements,¹⁹ where only the ScAl₂-Cl₉ and YAl₂Cl₉ vapor complexes were detected.

Although outside the scope of this paper, we noted that when searching the systematics and anomalies in physical and chemical properties of pure metals, compounds, and alloys in the solid state and EDTA complexes in aqueous solutions, Gschneidner^{32,33} has discovered their linear or nearly linear dependence on the metallic or ionic radius of the three rare earth elements Sc, Y, and Lu and their higher property values than all the other rare earth elements. Moreover, he assumed 4f electron hybridization for La and argued the lower values for the solid and liquid systems from Ln = La to Ln = Yb to be all caused by the unpaired 4f electrons. Furthermore, he assumed a pseudo-La without unpaired 4f electrons and extended the linear trends from the three elements Sc, Lu, and Y to the pseudo-La. Here, the Sc, Lu, Y, and pseudo-La in the solid and liquid systems having no unpaired 4f electrons and having linear trends in their properties against the rare earth atomic or ionic radius are similar to the Sc, Lu, Y, and La in the $LnAl_3X_{12}$ vapor complexes reported in this study. Therefore, further experimental and theoretical studies on the microstructures of the vapor complexes $LnAl_nBr_{3n+3}$ and $LnAl_nCl_{3n+3}$ from Ln =Sc to Ln = Lu will be very interesting and will provide a deeper understanding of the systematics and anomalies in their thermodynamic properties.

Conclusions

This paper presents a systematic study on the complexation reactions $LnBr_3(s) + (n/2)Al_2Br_6(g) = LnAl_nBr_{3n+3}(g)$ in the $LnBr_3$ -AlBr_3 binary systems by the phase equilibrium-

quenching measurements in the temperature range 601-833K and pressure range 0.01-0.22 MPa for the 16 rare earth elements Ln = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu and by interpolation for the radioelement Ln = Pm. The results show that the $LnAl_3$ - Br_{12} complexes are the sole stable vapor complexes for all the rare earth elements under the same reaction conditions. In total for all the 17 vapor complexes LnAl₃Br₁₂, the four complexes ScAl₃Br₁₂, LuAl₃Br₁₂, YAl₃Br₁₂, and LaAl₃Br₁₂ without unpaired 4f electrons have higher standard enthalpies and standard entropies than the complexes of the other 13 rare earth elements with unpaired 4f electrons. Moreover, the property values of the four vapor complexes show nearly linear dependence on their rare earth ionic radius. Furthermore, the standard enthalpies and standard entropies of the vapor complexes $LnAl_3Br_{12}$ from Ln = La to Ln = Luagainst the rare earth atomic number show significant Gd divergence.

Acknowledgment. This work was supported by the National Natural Science Foundation of China (Grant 50274027). We thank D.-M. Yang and J.-H. Jiang for assistance with the quenching experiments.

Supporting Information Available: Experimental quenching data for the vapor complexes $LnAl_nBr_{3n+3}$ of the 16 rare earth elements Ln = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (Tables S1–S16) and plots of $ln(p_{LnAl_nBr_{3n+3}}/p^\circ)$ vs $ln(p_{Al_2Br_6}/p^\circ)$ of the same 16 rare earth elements (Figure S1). The material is available free of charge via the Internet at http://pubs.acs.org.

IC061795Z